Welcome to vVARDIS for dental professionals! If you are not a dental professional and wish to make a purchase, please visit vvardis.com.
Search
Close this search box.

Literature

Table of Contents

CURODONT™ REPAIR

(A) Reviews
  1. Keeper JH et al. Systematic review and meta-analysis on the effect of self-assembling peptide P11-4 on arrest, cavitation, and progression of initial caries lesions. J Am Dent Assoc. 2023 Jul;154(7):580-591. https://pubmed.ncbi.nlm.nih.gov/37245138/
  2. Alkilzy M, et al. Biomimetic Enamel Regeneration Using Self-Assembling Peptide P11-4. Biomimetics (Basel). 2023 Jul 4;8(3):290. https://pubmed.ncbi.nlm.nih.gov/37504178/
  3. B K A, R Y, Puranik MP. Remineralization of early enamel caries lesions using self-assembling peptides P11-4: Systematic review and meta-analysis. J Oral Biol Craniofac Res. 2022 May-Jun;12(3):324-331. https://pubmed.ncbi.nlm.nih.gov/35433245/
  4. Dawasaz AA, et al. Effectiveness of Self-Assembling Peptide (P11-4) in Dental Hard Tissue Conditions: A Comprehensive Review. Polymers (Basel). 2022 Feb 18;14(4):792. https://pubmed.ncbi.nlm.nih.gov/35215706/
  5. Mohamed RN, et al. Self-assembling peptide P11-4 in remineralization of enamel caries – a systematic review of in-vitro studies. Acta Odontol Scand. 2021 Mar;79(2):139-146. https://pubmed.ncbi.nlm.nih.gov/33026894/
  6. Arifa MK, et al. Recent Advances in Dental Hard Tissue Remineralization: A Review of Literature. Int J Clin Pediatr Dent. 2019 Mar-Apr;12(2):139-144. https://pubmed.ncbi.nlm.nih.gov/31571787/
  7. Pandya M, Diekwisch TGH. Enamel biomimetics-fiction or future of dentistry. Int J Oral Sci. 2019 Jan 5;11(1):8. https://pubmed.ncbi.nlm.nih.gov/30610185/
  8. Philip N. State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management. Caries Res. 2019;53(3):284-295. https://pubmed.ncbi.nlm.nih.gov/30296788/
  9. González-Cabezas C, Fernández CE. Recent Advances in Remineralization Therapies for Caries Lesions. Adv Dent Res. 2018 Feb;29(1):55-59. https://pubmed.ncbi.nlm.nih.gov/29355426/
  10. Buzalaf MAR, Pessan JP. New Preventive Approaches Part I: Functional Peptides and Other Therapies to Prevent Tooth Demineralization. Monogr Oral Sci. 2017; 26:88-96. https://pubmed.ncbi.nlm.nih.gov/29050026/
  11. Amaechi BT. Remineralisation – the buzzword for early MI caries management. Br Dent J. 2017 Aug 11;223(3):173-182. https://pubmed.ncbi.nlm.nih.gov/28798421/
  12. Clarkson BH, Exterkate RA. Noninvasive dentistry: a dream or reality? Caries Res. 2015;49 Suppl 1:11-7. https://pubmed.ncbi.nlm.nih.gov/25871414/
  13. Donovan TE, et al. Annual review of selected scientific literature: report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent. 2014 Nov;112(5):1038-87. https://pubmed.ncbi.nlm.nih.gov/25443419/
(B) Early Caries
  1. Atteya SM, et al. Self-assembling peptide and nano-silver fluoride in remineralizing early enamel carious lesions: randomized controlled clinical trial. BMC Oral Health. 2023 Aug 19;23(1):577. https://pubmed.ncbi.nlm.nih.gov/37598194/
  2. Shah SV, et al. Framework for fiscal impact analysis of managing initial caries lesions with noninvasive therapies. J Am Dent Assoc. 2023 Oct;154(10):897-909. https://pubmed.ncbi.nlm.nih.gov/37770132/
  3. Bröseler F, et al. Randomised clinical trial investigating self-assembling peptide P11-4 in the treatment of early caries. Clin Oral Investig. 2020 Jan;24(1):123-132. https://pubmed.ncbi.nlm.nih.gov/31037343/
  4. Doberdoli D, et al. Randomized Clinical Trial investigating Self-Assembling Peptide P11-4 for Treatment of Early Occlusal Caries. Sci Rep. 2020 Mar 6;10(1):4195. https://pubmed.ncbi.nlm.nih.gov/32144336/
  5. Schlee M, et. al. Clinical performance of self-assembling peptide P11 -4 in the treatment of initial proximal carious lesions: A practice-based case series. J Investig Clin Dent. 2018 Feb;9(1) https://pubmed.ncbi.nlm.nih.gov/28868637/
  6. Brunton PA, et al. Treatment of early caries lesions using biomimetic self-assembling peptides-a clinical safety trial. Br Dent J. 2013  Aug;215(4) https://pubmed.ncbi.nlm.nih.gov/23969679/
  7. Sedlakova Kondelova P, et al. Efficacy of P11-4 for the treatment of initial buccal caries: a randomized clinical trial. Sci Rep. 2020 Nov 9;10(1):20211. https://pubmed.ncbi.nlm.nih.gov/33214593/
  8. Alkilzy M, et al. Treatment of Carious Lesions Using Self-Assembling Peptides. Adv Dent Res. 2018(29):42-47. https://pubmed.ncbi.nlm.nih.gov/29355413/
  9. Deyhle H, et al. Mineralization of Early Stage Carious Lesions In Vitro-A Quantitative Approach. Dent J (Basel). 2015 Oct 10;3(4):111-122. https://pubmed.ncbi.nlm.nih.gov/29567931/
  10. Pitts N. Summary of: Treatment of early caries lesions using biomimetic self-assembling peptides–a clinical safety trial. Br Dent J. 2013 Aug;215(4):174-5. https://pubmed.ncbi.nlm.nih.gov/23969659
(C) Orthodontic White Spot Lesions
  1. Kobeissi R, Badr SB, Osman E. Effectiveness of Self-assembling Peptide P11-4 Compared to Tricalcium Phosphate Fluoride Varnish in Remineralization of White Spot Lesions: A Clinical Randomized Trial. Int J Clin Pediatr Dent. 2020; 13:451-456. https://pubmed.ncbi.nlm.nih.gov/33623327/
  2. Natchiyar N, et al. Comparison of Remineralizing Agents in the Management of White Spot Lesions In Three- to Five-year-old Children: a Clinical Trial. Pediatr Dent. 2023(45):99-106. https://pubmed.ncbi.nlm.nih.gov/37106544/
  3. Welk A, et al. Effect of self-assembling peptide P11-4 on orthodontic treatment-induced carious lesions. Sci Rep. 2020(10):6819. https://pubmed.ncbi.nlm.nih.gov/32321955/
  4. Ghaly YS, et al. Effect of self-assembling peptide and other remineralizing agents on preventing initial enamel lesions around orthodontic brackets: An in vitro comparative study. Int Orthod. 2023 Jun;21(2):100751. https://pubmed.ncbi.nlm.nih.gov/37003059/
(D) Regenerating/Remineralizing Properties of P11-4
  1. Alkilzy M, et al. Self-assembling Peptide P11-4 and Fluoride for Regenerating Enamel. J Dent Res. 2018 Feb;97(2):148-154. https://pubmed.ncbi.nlm.nih.gov/28892645/
  2. Nath SJC, et al. Comparison of the Enamel Remineralisation Potential of Self-Assembling Peptides. Int Dent J. 2024 Apr;74(2):187-194. https://pubmed.ncbi.nlm.nih.gov/37743135/
  3. Shetty SS, Nekkanti S. Remineralization Potential of a Novel Biomimetic Material (Self-assembling Peptide P11-4) on Early Enamel Caries: An In Vitro Study. J Contemp Dent Pract. 2023 Mar 1;24(3):181-187. https://pubmed.ncbi.nlm.nih.gov/37272130/
  4. Özdemir Ş, et al. Remineralization potential of P11-4 and fluoride on secondary carious primary enamel: A quantitative evaluation using microcomputed tomography. Microsc Res Tech. 2022 Feb;85(2):807-812. https://pubmed.ncbi.nlm.nih.gov/34981866/
  5. Üstün N, Aktören O. Analysis of efficacy of the self-assembling peptide-based remineralization agent on artificial enamel lesions. Microsc Res Tech. 2019 Jul;82(7):1065-1072. https://pubmed.ncbi.nlm.nih.gov/30884045/
  6. Jablonski-Momeni A, et al. Impact of self-assembling peptides in remineralisation of artificial early enamel lesions adjacent to orthodontic brackets. Sci Rep. 2020 Sep 15;10(1):15132. https://pubmed.ncbi.nlm.nih.gov/32934335/
  7. Jablonski-Momeni A, et al. Efficacy of the self-assembling peptide P11-4 in constructing a remineralization scaffold on artificially-induced enamel lesions on smooth surfaces. J Orofac Orthop. 2014 May;75(3):175-90. https://pubmed.ncbi.nlm.nih.gov/24825830/
  8. Kamal D, et al. Complementary remineralizing effect of self-assembling peptide (P11-4) with CPP-ACPF or fluoride: An in vitro study. J Clin Exp Dent. 2020 Feb 1;12(2):e161-e168. https://pubmed.ncbi.nlm.nih.gov/32071698/
  9. Üstün N, Aktören O. Analysis of efficacy of the self-assembling peptide-based remineralization agent on artificial enamel lesions. Microsc Res Tech. 2019 Jul;82(7):1065-1072. https://pubmed.ncbi.nlm.nih.gov/30884045
(E) In vitro studies
  1. Barbosa-Martins LF, et al. Enhancing bond strength on demineralized dentin by pre-treatment with selective remineralising agents. J Mech Behav Biomed Mater. 2018;81:214-221 https://pubmed.ncbi.nlm.nih.gov/29550716/
  2. Barbosa-Martins LF, et al. Biomimetic Mineralizing Agents Recover the Micro Tensile Bond Strength of Demineralized Dentin. Materials (Basel). 2018; 11:1733 https://pubmed.ncbi.nlm.nih.gov/30223511/
  3. Deyhle H, et al. Mineralization of Early Stage Carious Lesions In Vitro—A Quantitative Approach. Dent J 2015; 3:111-122 https://pubmed.ncbi.nlm.nih.gov/29567931/
  4. Jablonski-Momeni A, Heinzel-Gutenbrunner M. Efficacy of the “Self-assembling peptide P11-4” in the formation of a remineralization scaffold on artificially induced enamel lesions on smooth surfaces. J Orofac Orthop 2014; 75:175-190 https://pubmed.ncbi.nlm.nih.gov/24825830/
  5. Jablonski-Momeni A, et al. Impact of self-assembling peptides in remineralisation of artificial early enamel lesions adjacent to orthodontic brackets. Sci Rep. 2020; 10:15132 https://pubmed.ncbi.nlm.nih.gov/32934335/
  6. Kamal D, Hassanein H, Elkassas D, Hamza H. Comparative evaluation of remineralizing efficacy of biomimetic self-assembling peptide on artificially induced enamel lesions: An in vitro study. J Conserv Dent. 2018;21:536-541 https://pubmed.ncbi.nlm.nih.gov/30294117/
  7. Kamal D, Hassanein et al. Complementary remineralizing effect of self-assembling peptide (P11-4) with CPP-ACPF or fluoride: An in vitro study. J Clin Exp Dent. 2020;12:e161-e168 https://pubmed.ncbi.nlm.nih.gov/32071698/
  8. Knaup T, Korbmacher-Steiner H, Jablonski-Momeni A. Effect of the caries-protective self-assembling peptide P11-4 on shear bond strength of metal brackets. J Orofac Orthop. 2021;82:329-336. https://pubmed.ncbi.nlm.nih.gov/32876755/
  9. Kucukyilmaz E, Savas S. Measuring the remineralization potential of different agents with quantitative light-induced fluorescence digital Biluminator. J Appl Biomater Funct Mater. 2017;15:e101-e106 https://pubmed.ncbi.nlm.nih.gov/27647387/
  10. Moreira KM, et al. Impact of biomineralization on resin/biomineralized dentin bond longevity in a minimally invasive approach: An “in vitro” 18-month follow-up. Dent Mater. 2021;37:e276-e289. https://pubmed.ncbi.nlm.nih.gov/33608139/
  11. Nath SJC, Fu Y, et al. A Comparison of the Enamel Remineralisation Potential of Self-Assembling Peptides. Int Dent J. 2024 Apr;74(2):187-194 https://pubmed.ncbi.nlm.nih.gov/37743135/
  12. Özdemir Ş, Taran PK, et al. Remineralization potential of P11-4 and fluoride on secondary carious primary enamel: A quantitative evaluation using microcomputed tomography. Microsc Res Tech. 2022;85:807-812 https://pubmed.ncbi.nlm.nih.gov/34981866/
  13. Savas S, Kucukyilmaz E, et al. Effects of Remineralization Agents on Artificial Carious Lesions. Pediatr Dent. 2016;38:511-518. https://pubmed.ncbi.nlm.nih.gov/28281957/
  14. Schmidlin P, Zobrist K, et al. In vitro re-hardening of artificial enamel caries lesions using enamel matrix proteins or self-assembling peptides. J Appl Oral Sci. 2016;24:31-6. https://pubmed.ncbi.nlm.nih.gov/27008255/
  15. Lena Sezici Y, et al. Comparative evaluation of fluoride varnishes, self-assembling peptide-based remineralization agent, and enamel matrix protein derivative on artificial enamel remineralization in vitro. Prog Orthod. 2021 Jan 25;22(1):4. https://pubmed.ncbi.nlm.nih.gov/33491110/
  16. Shetty SS, Nekkanti S. Remineralization Potential of a Novel Biomimetic Material (Self-assembling Peptide P11-4) on Early Enamel Caries: An In Vitro Study. J Contemp Dent Pract. 2023;24:181-187. https://pubmed.ncbi.nlm.nih.gov/37272130/
  17. Silvertown JD, et al. Remineralization of natural early caries lesions in vitro by P11 -4 monitored with photothermal radiometry and luminescence. J Investig Clin Dent. 2017;8(4). https://pubmed.ncbi.nlm.nih.gov/28052551/
  18. Sindhura V, Uloopi KS, et al. Evaluation of enamel remineralizing potential of self-assembling peptide P11-4 on artificially induced enamel lesions in vitro. J Indian Soc Pedod Prev Dent. 2018;36:352-356. https://pubmed.ncbi.nlm.nih.gov/30324924/
  19. Suda S, Takamizawa T, et al. Application of the Self- Assembling Peptide P11-4 for Prevention of Acidic Erosion. Oper Dent. 2018;43:E166-E172. https://pubmed.ncbi.nlm.nih.gov/29513639/
  20. Takahashi F, Kurokawa H, et al. Ultrasonic assessment of the effects of self-assembling peptide scaffolds on preventing enamel demineralization. Acta Odontol Scand. 2016;74:142-7. https://pubmed.ncbi.nlm.nih.gov/26156830/
  21. Tripathi P, Mengi R, et al. Evaluation of Remineralizing Capacity of P11-4, CPP-ACP, Silver Diamine Fluoride, and NovaMin: An In Vitro Study. J Contemp Dent Pract. 2021;22:357-360. https://pubmed.ncbi.nlm.nih.gov/34267003/
  22. Üstün N, Aktören O. Analysis of efficacy of the self-assembling peptide-based remineralization agent on artificial enamel lesions. Microsc Res Tech. 2019;82:1065-1072.  https://pubmed.ncbi.nlm.nih.gov/30884045 

SELF-ASSEMBLING PEPTIDE TECHNOLOGY

  1. Aggeli A, et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature. 1997 Mar 20;386(6622):259-62. https://pubmed.ncbi.nlm.nih.gov/9069283/
  2. Aggeli A, et al. pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases. J Am Chem Soc. 2003 Aug 13;125(32):9619-28.   https://pubmed.ncbi.nlm.nih.gov/12904028/
  3. Camassari JR, et al. The Self-assembling peptide P11-4 influences viability and osteogenic differentiation of stem cells of the apical papilla (SCAP). J Dent. 2023 Jul;134: 104551.  https://pubmed.ncbi.nlm.nih.gov/37201776/
  4. Carvalho RG, et al. Self-assembled peptide P11-4 interacts with the type I collagen C-terminal telopeptide domain and calcium ions. Dent Mater. 2023 Aug;39(8):708.  https://pubmed.ncbi.nlm.nih.gov/37394390/
  5. Araújo IJS, et al. Self-assembly peptide P11-4 induces mineralization and cell-migration of odontoblast-like cells. J Dent. 2022; 121:104111.  https://pubmed.ncbi.nlm.nih.gov/35460865/
  6. de Souza Araújo IJ, et al. Self-assembling peptide-laden electrospun scaffolds for guided mineralized tissue regeneration. Dent Mater. 2022 Nov;38(11):1749-1762. https://pubmed.ncbi.nlm.nih.gov/36180310/
  7. Bommer C, et al. Efficacy and safety of P11-4 for the treatment of periodontal defects in dogs. Clin Oral Investig. 2022 Mar;26(3):3151-3166.  https://pubmed.ncbi.nlm.nih.gov/35006293/
  8. Gharaei R, et al. Biomimetic peptide enriched nonwoven scaffolds promote calcium phosphate mineralisation. RSC Adv. 2020 Jul 29;10(47):28332-28342. https://pubmed.ncbi.nlm.nih.gov/35519117/
  9. Koch F, et al. Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials. BMC Oral Health. 2020; 20:148. https://pubmed.ncbi.nlm.nih.gov/32429904/
  10. Koch F, et al. A Versatile Biocompatible Antibiotic Delivery System Based on Self-Assembling Peptides with Antimicrobial and Regenerative Potential. Adv Healthc Mater. 2019Jul;8(13): e1900167 https://pubmed.ncbi.nlm.nih.gov/30985084/
  11. de Sousa JP, et al. The Self-Assembling Peptide P11-4 Prevents Collagen Proteolysis in Dentin. J Dent Res. 2019 Mar;98(3):347-354. https://pubmed.ncbi.nlm.nih.gov/30612505/
  12. Koch F, et al. Mechanical characteristics of beta sheet-forming peptide hydrogels are dependent on peptide sequence, concentration and buffer composition. R Soc Open Sci. 2018; 5:171562. https://pubmed.ncbi.nlm.nih.gov/29657766/
  13. Kind L, et al. Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide. J Dent Res. 2017 Jul;96(7):790-797. https://pubmed.ncbi.nlm.nih.gov/28346861/
  14. Kyle S, Aggeli A, Ingham E, McPherson MJ. Recombinant self-assembling peptides as biomaterials for tissue engineering. Biomaterials 2010;31:9395–9405. https://pubmed.ncbi.nlm.nih.gov/20932572/
  15. Saha S, Yang XB, et al. A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study. Bone. 2019 Oct; 127:602-611. https://pubmed.ncbi.nlm.nih.gov/31351196/
  16. Maude S, Ingham E, Aggeli A. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine (Lond). 2013 May;8(5):823-47. https://pubmed.ncbi.nlm.nih.gov/23656267/
  17. Kirkham J, Firth A, et al. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 2007 May;86(5):426-30. https://pubmed.ncbi.nlm.nih.gov/17452562/
  18. Firth A, Aggeli A, et al. Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine (Lond). 2006 Aug;1(2):189-99. https://pubmed.ncbi.nlm.nih.gov/17716108/

CURODONT PROTECT & CURODONT D’SENZ

  1. Baltaci E, Bilmenoglu C, et al. Effect of three different remineralising agents on prevention against acidic erosion of primary teeth: an in vitro study. Eur Arch Paediatr Dent. 2023 Oct;24(5):651-659.  https://pubmed.ncbi.nlm.nih.gov/37646903/
  2. Bilge K, Kılıç V. Effects of different remineralizing agents on color stability and surface characteristics of the teeth following vital bleaching. Microsc Res Tech. 2021 Oct;84(10):2206-2218.  https://pubmed.ncbi.nlm.nih.gov/33852758/
  3. Gayas Z, Azher U, et al. Comparative Evaluation of Antimicrobial Efficacy of Fluoride-Based and Self-Assembling Peptide P11-4-based Tooth Remineralization Agents on Streptococcus mutans: A Microbiological Study. Contemp Clin Dent. 2023 Apr-Jun;14(2):141-144.  https://pubmed.ncbi.nlm.nih.gov/37547429/
  4. Ghaly YS, El-Wassefy NA, et al. Effect of self-assembling peptide and other remineralizing agents on preventing initial enamel lesions around orthodontic brackets: An in vitro comparative study. Int Orthod. 2023 Jun;21(2):100751.  https://pubmed.ncbi.nlm.nih.gov/37003059/
  5. Moras CG, Acharya SR, et al. Regenerative biomineralization potential of commercially available remineralizing agents as a preventive treatment approach for tooth erosion – An in vitro laser-induced breakdown spectroscopy analysis. J Conserv Dent. 2023 Mar-Apr;26(2):165-169  https://pubmed.ncbi.nlm.nih.gov/37205890/
  6. Jablonski-Momeni A, Korbmacher-Steiner H, et al. Randomised in situ clinical trial investigating self-assembling peptide matrix P11-4 in the prevention of artificial caries lesions. Sci Rep. 2019 Jan 22;9(1):269.  https://pubmed.ncbi.nlm.nih.gov/30670760/
  7. Schlee M, Rathe F, et al. Self-assembling peptide matrix for treatment of dentin hypersensitivity: A randomized controlled clinical trial. J Periodontol. 2018 Jun;89(6):653-660.  https://pubmed.ncbi.nlm.nih.gov/29520816/
  8. Ardu S, Varatharaju V, et al. Protection Against Discolouration by Two Over-the Counter Desensitising Products. Oral Health Prev Dent. 2018;16(5):439-444.  https://pubmed.ncbi.nlm.nih.gov/30460357/
  9. Soares R, De Ataide IN, et al. Assessment of Enamel Remineralisation After Treatment with Four Different Remineralising Agents: A Scanning Electron Microscopy (SEM) Study. J Clin Diagn Res. 2017 Apr;11(4):ZC136-ZC141.  https://pubmed.ncbi.nlm.nih.gov/28571281/

CURODONT REPAIR & CURODONT PROTECT

  1. Godenzi D, Bommer C, et al. Remineralizing potential of the biomimetic P11-4 self-assembling peptide on noncavitated caries lesions: A retrospective cohort study evaluating semistandardized before-and-after radiographs. J Am Dent Assoc. 2023 Oct;154(10):885-896.e9.  https://pubmed.ncbi.nlm.nih.gov/37642611/
  2. Magalhães GAP, Fraga MAA, et al. Effect of a Self-Assembly Peptide on Surface Roughness and Hardness of Bleached Enamel. J Funct Biomater. 2022 Jun 13;13(2):79.  https://pubmed.ncbi.nlm.nih.gov/35735934/
  3. Doberdoli D, Bommer C, et al. Randomized Clinical Trial investigating Self-Assembling Peptide P11-4 for Treatment of Early Occlusal Caries. Sci Rep. 2020;10:4195.  https://pubmed.ncbi.nlm.nih.gov/32144336/

WHITENING WITH vVARDIS TECHNOLOGY

  1. Bommer C, Flessa HP, et al. Hydroxyapatite and Self-Assembling Peptide Matrix for Non-Oxidizing Tooth Whitening. J Clin Dent. 2018 Jun;29(2):57-63. https://pubmed.ncbi.nlm.nih.gov/30211992/ 
  2. Hojabri N, Kaisarly D, et al. Adhesion and whitening effects of P11-4 self-assembling peptide and HAP suspension on bovine enamel. Clin Oral Investig. 2021 May;25(5):3237-3247. https://pubmed.ncbi.nlm.nih.gov/33108484/
  3. Hojabri N, Kunzelmann KH. Adhesion and whitening efficacy of P11-4 self-assembling peptide and HAP suspension after using NaOCl as a pre-treatment agent. BMC Oral Health. 2022 Mar 4;22(1):59. https://pubmed.ncbi.nlm.nih.gov/35246089/

ABSTRACTS, POSTERS & PAPER PRESENTATIONS

  1. Doberdoli D, Haliti F, Begzati A. Efficacy of Self-assembling Peptide P11-4 with Fluoride Varnish or Self-assembling Peptide Matrix for the Treatment of Early Occlusal Carious Lesions. IADR/AADR/CADR General Session 2019, Presentation 0368, Vancouver, Canada
  2. Davies RPW, Howard R, et al. Treatment of Fabricated Caries Lesions; Self-Assembling Peptides vs Fluoride. Abstract 143. Caries Res 2015;49:359
  3. Takahashi F, Kurokawa H, et al. Evaluation of Application of Peptide P11-4 on Remineralization of Enamel. AADR/CADR Annual Meeting, Abstract 1804, 2016, Los Angeles, USA.
  4. Takahashi F, Suda S, Sai K, Kurokawa H, Hinoura K, Miyazaki M. Application of the Self-assembling Peptide P11-4 on Acid Erosion Prevention. IADR/AADR/CADR General Session 2017, Presentation 0375, San Francisco, USA
  5. Patel S, Vinh A, Brubaker L, Solomon E, Amaechi B, Noureldin A. In Vitro Assessment of a Novel Biomimetic-Regeneration of Early Caries Lesions. AADR/CADR Annual Meeting 2016, Presentation 1808, Los Angeles, USA.
  6. Brubaker L, Vinh A, Patel S, Solomon E, Amaechi B, Noureldin A. Remineralization of Early-Enamel Lesions Using Biomimetic Regeneration Combined With Fluoride-toothpaste” AADR/CADR Annual Meeting 2016, Abstract 1809, Los Angeles, USA.
  7. Godenzi D. Give Teeth a Chance: Curodont Repair in daily practice. Lecture at EAPD, Lugano, Switzerland 2018
  8. Brigi C. In vitro measurement of dental remineralisation: investigating a biomimetic self-assembling peptide treatment strategy. Master Thesis, Queen Mary, University of London, 2014
  9. Burke JL. In situ engineering of skeletal tissues using self-assembled biomimetic scaffolds. PhD Thesis, University of Leeds, Leeds Dental Institute, 2011

Welcome to vVARDIS!

You are on our website for dental professionals.
If you are not a dental professional and wish to make a purchase, please visit vvardis.com.